Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Handb Exp Pharmacol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509238

RESUMEN

Cannabis sativa is one of the oldest medicinal plants in human history. Even ancient physicians from hundreds of years ago used Cannabis sativa to treat several conditions like pain. In the modern era, the research community, including health-care providers, have witnessed wide-scale changes in cannabis policy, legislation, and marketing, with a parallel increase in patient interest. A simple search in PubMed using "cannabis and pain" as keywords provides more than 2,400 articles, about 80% of which were published in the last 8-10 years. Several advancements have been achieved in understanding the complex chemistry of cannabis along with its multiple pharmacological activities. Preclinical data have demonstrated evidence for the promising potential of cannabis for pain management, and the continuous rise in the prevalence of pain increases the urgency to translate this into clinical practice. Despite the large body of cannabis literature, researchers still need to find rigorous answers for the questions about the efficacy and safety of cannabis in treatment of certain disorders such as pain. In the current chapter, we seek to present a critical overview about the current knowledge on cannabis with special emphasis on pain-related disorders.

2.
Front Neurol ; 15: 1320791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352134

RESUMEN

Primary headache disorders, such as migraine, account for a significant portion of disability rates worldwide, yet patients still struggle to receive the adequate medical and emotional support necessary to improve health outcomes. Insufficient pain management through either impractical pharmaceutical treatments or absent emotional support networks can worsen physical and mental health outcomes since comorbidities commonly associated with headache include hypertension, diabetes, depression, and anxiety. A lack of awareness on headache pathology and its observable severity can lead to pain-related prejudice that destroys beneficial aspects of patient self-advocacy and self-efficacy, thus potentially discouraging the use of healthcare services in favor of maladaptive coping skills. Acute treatments for primary headache disorders include non-steroidal anti-inflammatory drugs (i.e., aspirin, ibuprofen), triptans (i.e., sumatriptan), and opioids; however, continuous use of these pain-relieving agents can generate a secondary headache known as medication overuse headache (MOH). Recent work highlighting the overlap of morphological and functional brain changes in MOH and substance use disorder (SUD) suggests that insufficient pain management encourages analgesic misuse. The LGBTQ+ community-specifically transgender and gender non-conforming persons-struggles with high rates of mental illness and substance abuse. Since gender-affirming sex hormone therapy influences migraine progression, transgender and gender non-conforming (trans*) patients on hormone therapy have a higher risk for worsening migraine symptoms. However, trans* patients are less likely to have access to appropriate pain management techniques, thus preventing positive health outcomes for this vulnerable population.

3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834455

RESUMEN

Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-ß-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Neoplasias de la Mama , Dolor en Cáncer , Neuralgia , Humanos , Ratones , Femenino , Animales , Oxaliplatino/efectos adversos , Dolor en Cáncer/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/complicaciones , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Óseas/complicaciones , Neoplasias Óseas/tratamiento farmacológico , Antineoplásicos/efectos adversos
4.
Front Pain Res (Lausanne) ; 4: 1117842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795389

RESUMEN

Migraine is a primary headache disorder recognized by the World Health Organization as one of the most poorly understood and debilitating neurological conditions impacting global disability. Chronic pain disorders are more frequently diagnosed among cisgender women than men, suggesting that female sex hormones could be responsible for mediating chronic pain, including migraine and/or that androgens can be protective. This review discusses the major gonadal hormones, estrogens, progesterone, and testosterone in the context of molecular mechanisms by which they play a role in migraine pathophysiology. In addition, the literature to date describing roles of minor sex hormones including prolactin, luteinizing hormone, follicular stimulating hormone, and gonadotropin releasing hormone in migraine are presented. Because transgender and gender non-conforming (trans*) individuals are an underserved patient population in which gender-affirming sex hormone replacement therapy (HRT) is often medically necessary to align biological sex with gender identity, results from cisgender patient populations are discussed in the context of these major and minor sex hormones on migraine incidence and management in trans* patients.

5.
Front Pain Res (Lausanne) ; 4: 1171188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287623

RESUMEN

Introduction: The high prevalence and severe symptoms of migraines in humans emphasizes the need to identify underlying mechanisms that can be targeted for therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that reduced endocannabinoid tone may contribute to migraine development and other neuropathic pain conditions. While strategies that increase levels of the endocannabinoid n-arachidonoylethanolamide have been tested, few studies have investigated targeting the levels of the more abundant endocannabinoid, 2-arachidonoylgycerol, as an effective migraine intervention. Methods: Cortical spreading depression was induced in female Sprague Dawley rats via KCl (potassium chloride) administration, followed by measures of endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was then tested using reversal and prevention paradigms. Results: We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal grey associated with increased hydrolysis following headache induction. Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes, α/ß-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and prevented induced periorbital allodynia in a cannabinoid receptor-dependent manner. Discussion: Our study unravels a mechanistic link between 2-arachidonoylglycerol hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine. Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new therapeutic avenue for the treatment of headache.

6.
Pain ; 164(11): 2463-2476, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326644

RESUMEN

ABSTRACT: The propensity for breast cancer to metastasize to bone is coupled to the most common complaint among breast cancer patients: bone pain. Classically, this type of pain is treated using escalating doses of opioids, which lack long-term efficacy due to analgesic tolerance, opioid-induced hypersensitivity, and have recently been linked to enhanced bone loss. To date, the molecular mechanisms underlying these adverse effects have not been fully explored. Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). Pharmacological blockade with TAK242 (resatorvid) as well as the use of a TLR4 genetic knockout ameliorated the chronic morphine-induced osteolysis and hypersensitivity. Genetic MOR knockout did not mitigate chronic morphine hypersensitivity or bone loss. In vitro studies using RAW264.7 murine macrophages precursor cells demonstrated morphine-enhanced osteoclastogenesis that was inhibited by the TLR4 antagonist. Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism.


Asunto(s)
Neoplasias de la Mama , Osteólisis , Ratones , Humanos , Animales , Femenino , Morfina/farmacología , Receptor Toll-Like 4/genética , Osteólisis/inducido químicamente , Osteólisis/tratamiento farmacológico , Modelos Animales de Enfermedad , Analgésicos Opioides/uso terapéutico , Dolor/tratamiento farmacológico
7.
Front Neurosci ; 17: 1126004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144090

RESUMEN

Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.

8.
J Pain ; 24(3): 509-529, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283655

RESUMEN

Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.


Asunto(s)
Analgésicos Opioides , Ibuprofeno , Humanos , Femenino , Masculino , Ratas , Animales , Analgésicos Opioides/farmacología , Enfermedades Neuroinflamatorias , Morfina/farmacología , Péptidos Opioides , Antiinflamatorios , Dolor Postoperatorio
9.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203706

RESUMEN

Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.


Asunto(s)
Antígenos CD , Cadherinas , Células Endoteliales , Proteoma , Calcio , Endocannabinoides/farmacología , Calcio de la Dieta
10.
ACS Chem Neurosci ; 13(24): 3661-3667, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472927

RESUMEN

Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging.


Asunto(s)
Neuralgia , Canales de Sodio Activados por Voltaje , Ratas , Animales , Ratas Sprague-Dawley , Nervios Espinales/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Neuralgia/diagnóstico por imagen , Neuralgia/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/metabolismo
11.
Neurosci Lett ; 789: 136864, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063980

RESUMEN

Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Hiperalgesia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Corteza Prefrontal/metabolismo , Proteómica , ARN Mensajero/metabolismo , Ratas , Serotonina/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 323(5): H845-H860, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36149767

RESUMEN

Cognitive decline is linked to decreased cerebral blood flow, particularly in women after menopause. Impaired cerebrovascular function precedes the onset of dementia, possibly because of reduced functional dilation in parenchymal arterioles. These vessels are bottlenecks of the cerebral microcirculation, and dysfunction can limit functional hyperemia in the brain. Large-conductance Ca2+-activated K+ channels (BKCa) are the final effectors of several pathways responsible for functional hyperemia, and their expression is modulated by estrogen. However, it remains unknown whether BKCa function is altered in cerebral parenchymal arterioles after menopause. Using a chemically induced model of menopause, the 4-vinylcyclohexene diepoxide (VCD) model, which depletes follicles while maintaining intact ovaries, we hypothesized that menopause would be associated with reduced functional vasodilatory responses in cerebral parenchymal arterioles of wild-type mice via reduced BKCa function. Using pressure myography of isolated parenchymal arterioles, we observed that menopause (Meno) induced a significant increase in spontaneous myogenic tone. Endothelial function, assessed as nitric oxide production and dilation after cholinergic stimulation or endothelium-dependent hyperpolarization pathways, was unaffected by Meno. BKCa function was significantly impaired in Meno compared with control, without changes in voltage-gated K+ channel activity. Cerebral functional hyperemia, measured by laser-speckle contrast imaging during whisker stimulation, was significantly blunted in Meno mice, without detectable changes in basal perfusion. However, behavioral testing identified no change in cognition. These findings suggest that menopause induces cerebral microvascular and neurovascular deficits.NEW & NOTEWORTHY Cerebral parenchymal arterioles from menopause mice showed increased myogenic tone. We identified an impairment in smooth muscle cell BKCa channel activity, without a reduction in endothelium-dependent dilation or nitric oxide production. Microvascular dysfunction was associated with a reduction in neurovascular responses after somatosensory stimulation. Despite the neurovascular impairment, cognitive abilities were maintained in menopausal mice.


Asunto(s)
Trastornos Cerebrovasculares , Hiperemia , Animales , Arteriolas/metabolismo , Colinérgicos/metabolismo , Estrógenos/metabolismo , Femenino , Menopausia , Ratones , Óxido Nítrico/metabolismo
13.
Front Behav Neurosci ; 16: 903980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990729

RESUMEN

Introduction: Traumatic brain injury (TBI) is a leading cause of disability in the US. Angiotensin 1-7 (Ang-1-7), an endogenous peptide, acts at the G protein coupled MAS1 receptors (MASR) to inhibit inflammatory mediators and decrease reactive oxygen species within the CNS. Few studies have identified whether Ang-(1-7) decreases cognitive impairment following closed TBI. This study examined the therapeutic effect of Ang-(1-7) on secondary injury observed in a murine model of mild TBI (mTBI) in a closed skull, single injury model. Materials and methods: Male mice (n = 108) underwent a closed skull, controlled cortical impact injury. Two hours after injury, mice were administered either Ang-(1-7) (n = 12) or vehicle (n = 12), continuing through day 5 post-TBI, and tested for cognitive impairment on days 1-5 and 18. pTau, Tau, GFAP, and serum cytokines were measured at multiple time points. Animals were observed daily for cognition and motor coordination via novel object recognition. Brain sections were stained and evaluated for neuronal injury. Results: Administration of Ang-(1-7) daily for 5 days post-mTBI significantly increased cognitive function as compared to saline control-treated animals. Cortical and hippocampal structures showed less damage in the presence of Ang-(1-7), while Ang-(1-7) administration significantly changed the expression of pTau and GFAP in cortical and hippocampal regions as compared to control. Discussion: These are among the first studies to demonstrate that sustained administration of Ang-(1-7) following a closed-skull, single impact mTBI significantly improves neurologic outcomes, potentially offering a novel therapeutic modality for the prevention of long-term CNS impairment following such injuries.

14.
Pharmaceutics ; 14(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015292

RESUMEN

Cortical spreading depression (CSD) is a pathophysiological mechanism underlying headache disorders, including migraine. Blood-brain barrier (BBB) permeability is increased during CSD. Recent papers have suggested that heat shock proteins (HSP) contribute to the integrity of the blood-brain barrier. In this study, the possible role of HSP90 in CSD-associated blood-brain barrier leak at the endothelial cell was investigated using an in vitro model, for the blood-endothelial barrier (BEB), and an in vivo model with an intact BBB. We measured barrier integrity using trans endothelial electric resistance (TEER) across a monolayer of rodent brain endothelial cells (bEnd.3), a sucrose uptake assay, and in situ brain perfusion using female Sprague Dawley rats. CSD was induced by application of 60 mM KCl for 5 min in in vitro experiments or cortical injection of KCl (1 M, 0.5 µL) through a dural cannula in vivo. HSP90 was selectively blocked by 17-AAG. Our data showed that preincubation with 17-AAG (1 µM) prevented the reduction of TEER values caused by the KCl pulse on the monolayer of bEnd.3 cells. The elevated uptake of 14C-sucrose across the same endothelial monolayer induced by the KCl pulse was significantly reduced after preincubation with HSP90 inhibitor. Pre-exposure to 17-AAG significantly mitigated the transient BBB leak after CSD induced by cortical KCl injection as determined by in situ brain perfusion in female rats. Our results demonstrated that inhibition of HSP90 with the selective agent 17-AAG reduced CSD-associated BEB/BBB paracellular leak. Overall, this novel observation supports HSP90 inhibition mitigates KCl-induced BBB permeability and suggests the development of new therapeutic approaches targeting HSP90 in headache disorders.

15.
Pharmaceutics ; 14(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890365

RESUMEN

Pathologies of the blood-brain barrier (BBB) have been linked to a multitude of central nervous system (CNS) disorders whose pathology is poorly understood. Cortical spreading depression (CSD) has long been postulated to be involved in the underlying mechanisms of these disease states, yet a complete understanding remains elusive. This study seeks to utilize an in vitro model of the blood-brain barrier (BBB) with brain endothelial cell (b.End3) murine endothelioma cells to investigate the role of CSD in BBB pathology by characterizing effects of the release of major pronociceptive substances into the extracellular space of the CNS. The application of trans-endothelial electrical resistance (TEER) screening, transcellular uptake, and immunoreactive methods were used in concert with global proteome and phospho-proteomic approaches to assess the effect of modeled CSD events on the modeled BBB in vitro. The findings demonstrate relocalization and functional alteration to proteins associated with the actin cytoskeleton and endothelial tight junctions. Additionally, unique pathologic mechanisms induced by individual substances released during CSD were found to have unique phosphorylation signatures in phospho-proteome analysis, identifying Zona Occludins 1 (ZO-1) as a possible pathologic "checkpoint" of the BBB. By utilizing these phosphorylation signatures, possible novel diagnostic methods may be developed for CSD and warrants further investigation.

16.
Pain ; 163(5): e642-e653, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34629389

RESUMEN

ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.


Asunto(s)
Calcio , Prurito , Animales , Calcio/metabolismo , Femenino , Ganglios Espinales/metabolismo , Humanos , Interleucinas/efectos adversos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Ratones , Dolor/metabolismo , Prurito/metabolismo
17.
Cannabis Cannabinoid Res ; 7(5): 621-627, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34935460

RESUMEN

Introduction: Cannabis acceptance and use continues to rise despite the gaps in knowledge regarding the mechanisms of cannabinoids and the endocannabinoid system in many physiological functions, including respiratory influence. Methods: With recent evidence of cannabinoid receptor 1 (CB1R) presence in the collection of respiratory neurons in the brainstem, as well as in the peripheral lung tissue, it is vital that the mechanisms involved in central and peripheral CB1R modulation of respiratory function be delineated. In this study we sought to define the roles of central versus peripheral CB1R activation on respiratory depression alone and in combination with morphine using whole body plethysmography. Results: We show that the peripherally restricted CB1 agonist (4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3yl]ethyl}morpholine [PrNMI] 0.3, 0.6, and 1 mg/kg) does not induce respiratory depression, while our previous studies showed that a central penetrating synthetic cannabinoid does induce respiratory depression. Significantly, the combination of morphine with the peripheral CB1 agonist, PrNMI, attenuated morphine-induced respiratory depression. Conclusions: These studies support that a peripherally restricted CB1R agonist may be a unique strategy to attenuate the respiratory depression associated with opioid therapy.


Asunto(s)
Cannabinoides , Insuficiencia Respiratoria , Humanos , Morfina/efectos adversos , Agonistas de Receptores de Cannabinoides/farmacología , Analgésicos Opioides/efectos adversos , Endocannabinoides , Cannabinoides/efectos adversos , Morfolinas/farmacología , Encéfalo , Insuficiencia Respiratoria/inducido químicamente , Receptores de Cannabinoides
18.
Biol Sex Differ ; 12(1): 60, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749819

RESUMEN

BACKGROUND: Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS: Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS: Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS: Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.


Asunto(s)
Endocannabinoides , Caracteres Sexuales , Animales , Femenino , Masculino , Sustancia Gris Periacueductal , Proteómica , Ratas , Ratas Sprague-Dawley
19.
Pharmacol Rev ; 73(4): 98-126, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34663685

RESUMEN

Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes ß-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes ß-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.


Asunto(s)
Cannabinoides , Cannabis , Adulto , Analgésicos/farmacología , Humanos , Calidad de Vida , Terpenos/farmacología
20.
J Pain ; 22(12): 1646-1656, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34157406

RESUMEN

Benefits of phototherapy were characterized in multiple diseases including depression, circadian rhythm disruptions, and neurodegeneration. Studies on migraine and fibromyalgia patients revealed that green light-emitting diodes (GLED) exposure provides a pragmatic and safe therapy to manage chronic pain. In rodents, GLED reversed hypersensitivity related to neuropathic pain. However, little is known about the underlying mechanisms of GLED efficacy. Here, we sought to understand how green light modulates the endogenous opioid system. We first characterized how exposure to GLED stimulates release of ß-endorphin and proenkephalin in the central nervous system of male rats. Moreover, by individually editing each of the receptors, we found that µ- and δ-opioid receptors are required for green light's antinociceptive effect in naïve rats and a model of HIV-induced peripheral neuropathy. We investigated how GLED could increase pain thresholds, and explored its potential in reversing hypersensitivity in a model of HIV-related neuropathy. Through behavioral and gene editing approaches, we identified that green light provides antinociception via modulation of the endogenous opioid system in the spinal cord. This work identifies a previously unknown mechanism by which GLED can improve pain management. Clinical translation of these results will advance the development of an innovative therapy devoid of adverse effects. PERSPECTIVE: Development of new pain management therapies, especially for HIV patients, is crucial as long-term opioid prescription is not recommended due to adverse side effects. Green light addresses this necessity. Characterizing the underlying mechanisms of this potentially groundbreaking and safe antinociceptive therapy will advance its clinical translation.


Asunto(s)
Encefalinas/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Fototerapia , Precursores de Proteínas/metabolismo , Médula Espinal/metabolismo , betaendorfina/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...